博彩网址大全-来博博彩投注

學術(shù)活動

數(shù)信學院學術(shù)報告

作者:     編輯:     來源:   發(fā)表于: 2020-01-06 16:12  點擊:
學術(shù)活動日期 01-07 時間 9:00
主講人 徐超江教授、王麗莉博士 地址 數(shù)信學院303報告廳

學術(shù)報告(一)

報告題目:Analytic smoothing effect for the nonlinear Landau equation

報告人: 徐超江 教授

報告時間:179:00-10:00

報告地點:數(shù)信學院303報告廳

摘要:We consider the Cauchy problem of the full nonlinear  Landau equation of Maxwellian molecules, under the perturbation frame work to global equilibrium. We show that if the initial perturbation is small enough in Sobolev space, then the Cauchy problem of the nonlinear Landau equation admits a unique solution which becomes analytic with respectto both position and velocity  variables for any positive time. This is the first result of analytic smoothing effect for the spatially inhomogeneous nonlinear kinetic  equation.

歡迎感興趣的老師參加!!

學術(shù)報告(二)

報告題目:Sharp fundamental gap estimate on convex domains of sphere,

報告人:王麗莉 博士

報告時間:1710:00-11:00

報告地點:數(shù)信學院303報告廳

摘要:B. Andrews and J. Clutterbuck proved the fundamental gap (the difference between the first two eigenvalues) conjecture for convex domains in the Euclidean space [3] and conjectured similar results hold for spaces with constant sectional curvature. We prove the conjecture for the sphere. Namely when D, the diameter of a convex domain in the unit S^n sphere, is ≤ π/2 , the gap is greater than the gap of the corresponding 1-dim sphere model. We also prove the gap is ≥ 3 π^2/D^2 when n ≥ 3, giving a sharp bound. As in [3], the key is to prove a super log-concavity of the first eigenfunction. This is a joint work with Dr. Shoo Seto and Prof. Guofang Wei.

歡迎感興趣的老師參加!!

編輯:

上一條:商學院“李達講壇”【第64期】:創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略背景下的產(chǎn)融結(jié)合研究:持股商業(yè)銀行如何改變企業(yè)創(chuàng)新行為


百家乐官网开线| 同乐城| 大发888网页打不开| 澳门百家乐官网有哪些| 大发888官方网址| 百家乐官网游戏什么时间容易出| 赌博启示录| 百家乐分析资料| 单机百家乐官网棋牌| 香港六合彩彩色图库| 百家乐解密软件| 百家乐官网群dmwd| 伯爵百家乐官网娱乐城| 菲彩娱乐| 万达百家乐娱乐城| 百家乐概率怎么算| 百家乐官网赌场导航| 浙江省| 云博娱乐城,| 發中發百家乐的玩法技巧和规则| 百家乐官网打庄技巧| ewin棋牌官网| 百家乐缩水软件| 百家乐平台哪个好本站所有数据都是网友推荐及提供 | 百家乐官网如何睇路| 娱网棋牌官方网站| 网上百家乐官网平台下载| 香港六合彩全年资料| 总玩百家乐有赢的吗| 百家乐分享| 百家乐官网游戏打水| 网上百家乐官网哪里开户| 稷山县| 会宁县| 千亿娱乐网| 亿酷棋牌世界下载| 百家乐板路| 百家乐论坛博彩啦| 山西百家乐用品| 百家乐视频游戏网站| 百家乐官网投注限额|