博彩网址大全-来博博彩投注

學術(shù)活動

數(shù)信學院學術(shù)報告

作者:     編輯:     來源:   發(fā)表于: 2020-01-06 16:12  點擊:
學術(shù)活動日期 01-07 時間 9:00
主講人 徐超江教授、王麗莉博士 地址 數(shù)信學院303報告廳

學術(shù)報告(一)

報告題目:Analytic smoothing effect for the nonlinear Landau equation

報告人: 徐超江 教授

報告時間:179:00-10:00

報告地點:數(shù)信學院303報告廳

摘要:We consider the Cauchy problem of the full nonlinear  Landau equation of Maxwellian molecules, under the perturbation frame work to global equilibrium. We show that if the initial perturbation is small enough in Sobolev space, then the Cauchy problem of the nonlinear Landau equation admits a unique solution which becomes analytic with respectto both position and velocity  variables for any positive time. This is the first result of analytic smoothing effect for the spatially inhomogeneous nonlinear kinetic  equation.

歡迎感興趣的老師參加!!

學術(shù)報告(二)

報告題目:Sharp fundamental gap estimate on convex domains of sphere,

報告人:王麗莉 博士

報告時間:1710:00-11:00

報告地點:數(shù)信學院303報告廳

摘要:B. Andrews and J. Clutterbuck proved the fundamental gap (the difference between the first two eigenvalues) conjecture for convex domains in the Euclidean space [3] and conjectured similar results hold for spaces with constant sectional curvature. We prove the conjecture for the sphere. Namely when D, the diameter of a convex domain in the unit S^n sphere, is ≤ π/2 , the gap is greater than the gap of the corresponding 1-dim sphere model. We also prove the gap is ≥ 3 π^2/D^2 when n ≥ 3, giving a sharp bound. As in [3], the key is to prove a super log-concavity of the first eigenfunction. This is a joint work with Dr. Shoo Seto and Prof. Guofang Wei.

歡迎感興趣的老師參加!!

編輯:

上一條:商學院“李達講壇”【第64期】:創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略背景下的產(chǎn)融結(jié)合研究:持股商業(yè)銀行如何改變企業(yè)創(chuàng)新行為


浩博国际娱乐城| 凯旋门百家乐娱乐城| 波克城市棋牌下载| 永利百家乐官网娱乐网| 百家乐搏牌| 百家乐官网娱乐城博彩正网| 百家乐官网过滤工具| 威尼斯人娱乐城线上赌场| 百家乐官网如何看牌| 有百家乐的游戏平台| 状元百家乐的玩法技巧和规则| 娱乐城代理| 百家乐官网开庄几率| 百家乐视频视频| 大发888开户注册会员| 澳门百家乐官网网40125| 威尼斯人娱乐城是波音| 真钱百家乐官网游戏大全| 大发888玩哪个能赢钱| 百家乐官网百胜注码法| 百家乐官网龙虎台布多少钱| 大发888的比赛怎么报名| 百家乐官网怎么玩请指教| 大发888是什么软件| 百家乐隐者博客| 真人在线百家乐| 国际百家乐规则| 百家乐官网赢钱公式冯耕| 大发888开户送58| 百家乐的赚钱原理| 全讯网官网| 网络百家乐| 永顺县| 澳门百家乐心理| 百家乐官网庄家抽水的秘密| 大发888游戏下载投注| 百家乐投注方法多不多| 真人百家乐官网博弈| 南平市| 王牌国际| 大发888官网|